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of Sport Sciences, University of Granada, Granada, Spain; kAquatic Testing, Training and Research Unit, 
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ABSTRACT
Swimming analysts aid coaches and athletes in the decision-making 
by providing evidence-based recommendations. The aim of this 
narrative review was to report the best practices of swimming 
analysts that have been supporting high-performance athletes. It 
also aims to share how swimming analysts can translate applied 
research into practice. The role of the swimming analyst, as part of 
a holistic team supporting high-performance athletes, has been 
expanding and is needed to be distinguished from the job scope 
of a swimming researcher. As testing can be time-consuming, 
analysts must decide what to test and when to conduct the evalua-
tion sessions. Swimming analysts engage in the modelling and 
forecast of the performance, that in short- and mid-term can help 
set races target-times, and in the long-term provide insights on 
talent and career development. Races can be analysed by manual, 
semi-automatic or fully automatic video analysis with single or 
multi-cameras set-ups. The qualitative and quantitative analyses 
of the swim strokes, start, turns, and finish are also part of the 
analyst job scope and associated with race performance goals. 
Land-based training is another task that can be assigned to analysts 
and aims to enhance the performance, prevent musculoskeletal 
injuries and monitor its risk factors.
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Introduction

Swimming research has increased since the inception of the series ‘International 
Symposium in Biomechanics and Medicine in Swimming’ in the 1970s. Ever since, 
studies about swimming typically comprise physiology and biomechanics analyses 

CONTACT Tiago M. Barbosa barbosa@ipb.pt
*These authors contributed equally to this work

SPORTS BIOMECHANICS                                  
https://doi.org/10.1080/14763141.2021.1960417

© 2021 Informa UK Limited, trading as Taylor & Francis Group

http://orcid.org/0000-0001-7071-2116
http://orcid.org/0000-0003-3406-8524
http://orcid.org/0000-0001-6514-760X
http://orcid.org/0000-0002-6773-2359
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/14763141.2021.1960417&domain=pdf&date_stamp=2021-08-16


(Pelayo & Alberty, 2011; Ungerechts & Keskinen, 2018). Research helped to improve 
technology and better understand the principles that underpin human swimming per-
formance, and can be classified as basic (fundamental) or field-oriented (applied). In 
sport sciences, basic research is usually published and has specific academic purposes, 
whereas field research aims to produce an outcome that can be applied to enhance 
performance or reduce the incidence of injury and eventually may result in 
a publication (Bishop et al., 2006). Field research is based on performance analysis, 
which can be defined as the provision of objective feedback to athletes and coaches 
through the use of different technologies and statistical analyses. Basic researchers aim to 
share ground-breaking publications, based mostly on their own research questions; 
conversely, field researchers in sport sciences aim to answer questions addressed by 
coaches, athletes and support staff (Buchheit, 2016). In tandem, the end-goal of research 
tailored towards the practitioner needs does not aim at being just disseminated in the 
form of a research paper (Buchheit, 2017a). Instead, it aims to give a step further, being 
the findings explored and providing guidance to key actors in the sports ecosystem 
(coaches, athletes and support staff).

Regardless of being basic or field-oriented, swimming research is strongly perfor-
mance-oriented. Performance analysis can be used to: (1) improve performance; (2) 
monitor progress over time; (3) track changes in performance-related variables; and (4) 
identify strengths and weaknesses of the athlete and other competitors. Force platform, 
tethered swimming, speedometer, video-based analysis and inertial sensors are the most 
common technologies used for performance and biomechanics assessments in competi-
tive swimming. These technologies should be combined with other domains such as 
physiology, psychology, nutrition or strength and conditioning to backup the decision- 
making (Mooney et al., 2016). Notwithstanding, swimming is a sport where the inter-
disciplinary and multidisciplinary approaches are standard frameworks and that the 
ultimate vision is to move on and become transdisciplinary.

Analysts are expected to collect, analyse and interpret data, and also have good 
communication and visualisation skills to aid coaches and athletes’ decision-making 
(Buchheit, 2017b). Coaches frequently conduct qualitative analysis themselves by eye-
balling (based on educated guess) and video-based analyses (Wilson, 2008). Analysts 
should be open to this practical knowledge based on the coaches´ background and past 
experience. As such, a good balance between qualitative and quantitative analyses is 
advisable.

A source of concern and one of the main challenges for analysts is the translation of 
some research into practice. Multiple research is conducted in laboratory settings with 
costly and time-consuming set-ups, which are hard to replicate in day-to-day testing by 
analysts. Also, research projects that recruited low-calibre swimmers may fail to have 
external and ecological validity if applied to high-performance counterparts. Therefore, 
academic researchers are encouraged to present a detailed description of the competi-
tive level within their articles (e.g., percentage of World Record, FINA points, race time 
plus SD, minimum and maximum values) and interpret the results and potential 
applications accordingly. Swimming researchers can design highly controlled testing 
procedures, whereas analysts quite often must compromise the control of confounding 
factors, feasibility, minimum disruption of the training schedule and delivering recom-
mendations in a timely manner.
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Even though some overlap, the tasks carried out by swimming researchers and 
swimming analysts are different (Table 1). Time is needed for the development of 
research tools, validating new technologies, or new training methods. Conversely, ana-
lysts need to work faster to aid decision-making (Coutts, 2016), have a holistic view of 
performance determinants (Groom & Cushion, 2004; Williams & Kendall, 2007) and 
advise where athletes can improve. The main goal of a swimming researcher is to gather 
evidence-based knowledge, whereas an analyst is to deliver evidence-based recommen-
dations to swimmers. Swimming researchers design case–control studies, cross-over 
studies or randomised control trials to address a research question. Conversely, swim-
ming analysts are more focused on case studies, addressing the swimmers concerns. 
Researchers deliver the findings of their studies to peers and analysts by publishing 
research papers, dissertations and thesis, or presentations at scientific meetings. On the 
other hand, analysts aim to provide recommendations to aid the decision-making of 
swimmers and coaches by delivering reports, infographics, video clips or hands-on 
lectures to peers, coaches, support staff and swimmers. The specific tasks of 
a swimming analyst are set in collaboration with coaches and remaining team staff. 
The job scope includes: (1) to be updated on scientific literature and translate it into short 
reports for coaches peruse; (2) to determine the different areas of evaluation (e.g., analysis 

Table 1. Comparison of the tasks carried out between swimming researchers and swimming analysts.
Swimming researchers Swimming analysts

Goals

Main goal Gather evidence-based 
knowledge

Deliver evidence-based recommendations

Secondary goal Deliver evidence-based 
recommendations

Gather evidence-based knowledge

Testing procedures

Design Case-control studies 
Cross-over studies 
Randomised control trials

Case studies

Participants Voluntary response sample Convenience sample
Data collection and 

handling
Slow 

Highly controlled conditions
Quick 

May compromise control and feasibility, but not validity 
and reliability.

Data analysis Null hypothesis testing 
Uncertainty by confidence 
intervals 
Standardised effect sizes

Uncertainty by confidence intervals 
Standardised effect sizes 
Worthwhile changes

Reporting

Purpose Share findings with the 
community

Provide recommendations to aid decision-making

Audience (primary) Researchers/academics 
Analysts

Analysts 
Coaches, support staff, and Athletes

Product (main 
deliverables)

Research papers 
Dissertations and thesis 
Oral presentations 
Posters

Reports 
Infographics 
Video clips 
Hands-on lectures

Presentation/ 
Language

Factual 
Informative 
Technical terms and jargons 
Formal

Objective 
Concise 
Plain 
Uncomplicated
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of starts, turns and swim stroke by different techniques, race analysis, dryland measure-
ment of muscular strength and power); (3) to design, plan and implement testing 
sessions; (4) to communicate with coaches and swimmers; (5) to handle data, results 
and deliver reports; (6) to collaborate with research teams. Therefore, the job scope of 
a swim analyst requires multiple skills, bridging research and practice.

From what was above mentioned, one can argue that the job scope, practices, tasks 
and deliverables of swimming analysts are different from swimming researchers. 
However, we failed to find in the literature any sharing of standard procedures and 
daily practices carried out by swimming analysts. Swimming analysts engage in the 
modelling and forecast of the performance, analysts must decide what to test and when 
to conduct the evaluation sessions. They also conduct race analysis, qualitative and 
quantitative analyses of the swim strokes, start, turns, and finish. Land-based training 
is another task that can be assigned to analysts. The aim of this narrative review was to 
report the best practices of swimming analysts that have been supporting high- 
performance athletes. It also aims to share how swimming analysts can translate applied 
research into practice.

Modelling and forecast of performance

One important role of an analyst is to run retrospective and prospective studies on 
a swimmer´s race performance. The tracking, follow-up and forecast of the race time can 
be carried out based on univariate or multivariate analyses. Univariate analysis consists of 
the study of performance time-series. It aims to describe or forecast how performance 
changes over time without considering the influence of determinant factors. For instance, 
it is possible to assess the stability of the performance from childhood to adulthood 
(Costa et al., 2011), in an Olympic cycle (Costa et al., 2010) or a competitive season 
(Costa et al., 2012). Long-term analysis can provide insightful benchmarks for talent 
development (Allen et al., 2014). Whereas, mid- and short-term analyses can aid swim-
mers to set target-times at major international competitions (Allen et al., 2015). It was 
possible to create a tool to easily evaluate the progress of any swimmer between the ages 
of 12 and 30 years by plotting the age-related performance progression towards the 2012 
Olympic gold medal winning time, as showcased with Katie Ledeck and Ryan Lochte 
(Allen et al., 2014). Another example is the forecast if Adam Peaty would be able to swim 
the 100 m Breaststroke under 57 s (Barbosa & Hodierne, 2018), which happened one year 
later, in 2019 (forecast in 2018: 56.83 s, World Record in 2019: 56.88 s)

Conversely, multifactorial analysis aims to describe, explain, and forecast the perfor-
mance based on the changes of determining factors. These are models where the 
performance is set as the dependent variable and key-factors that can determine it as 
independent variables. An analyst must take note of the dependent variable (e.g., race 
time, time trial, swim velocity) and collect data on the determinant factors (independent 
variables) by experimental testing or analytical models within days from the competitive 
event. Biomechanics, energetics, and motor control seem to be the main performance 
determinants in competitive swimming (Barbosa et al., 2010). Thus, split times, duration 
of each race phase, stroke kinematics, limb and body kinematics, drag force, thrust are 
some of the independent variables that can be input in the model. For example, multilevel 
modelling can be run to determine the speed achieved during each arm-pull (dependent 
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variable) having as independent variables the arm length, forearm length, hand surface 
area, handgrip strength, peak swim speed, speed fluctuation, underwater stroke time, 
mean thrust of the arm-pull, peak thrust and thrust fluctuation (Morais et al., 2020a).

Multivariate models enable the analyst to understand (Morais et al., 2014, 2017; Silva 
et al., 2007): (1) what are the main independent variables affecting the swimmer´s 
performance; (2) how dependent and independent variables change over time; (3) what 
is the partial contribution of each independent variable and how these change over time; 
(4) how much each independent variable explains the performance at a given point in 
time. These analyses are mostly underpinned by complex and dynamical systems, mak-
ing use of data science, large data sets and analytics. An example is the modelling and 
prediction of an elite female swimmer in the final of the 200 m backstroke at the 2000 
Olympic Games by neural network (Edelmann-Nusser et al., 2002). The prediction error 
was 0.05 s in a final race time of 2:12.64, having as input 19 races and training data in the 
4 weeks prior to each race.

The computation of standardised effect sizes is a practical tool on day-to-day 
tasks of an analyst, provided it is possible to collect more than two measures or 
population variability is known. Thus, an analyst can run several trials, or com-
pute the variability of a cohort of swimmers of similar profile or performance 
level. Standardised effect sizes yield the magnitude and direction of difference 
between two testing moments. In elite sports, effect sizes greater than 0.2 are 
deemed as meaningful (Buchheit, 2016). Alternatively, standardised effect sizes can 
also be converted into percentile gains (Barbosa et al., 2020a). Everything else 
being equal, the percentile gain can provide insight on how much a swimmer will 
improve if benchmarked against a hypothetical group of 100 peers.

One of the challenges is determining the significance of any differences observed and 
sharing this significance to coaches and swimmers. Same challenge has been reported in 
clinical settings and in this field it was put forward the concept of ‘minimum clinically 
important difference’, which aims at identify the clinically important and meaningful 
effects of treatments in patients (Jaeschke et al., 1989). Likewise, some analysts believe it 
can also be insightful to learn the smallest important effect, or smallest worthwhile 
change of their athletes (Hopkins et al., 2009). For instance, to stay in contention for 
a medal, an Olympic swimmer should improve performance by 1% within a competition 
and by 1% within the year leading up to the Olympics but an extra 0.4% improvement 
will substantially increase the chances of a medal (Pyne et al., 2004).

In summary, analysts have at their disposal several tools to model and forecast 
performance. In the short- and mid-term, it can help set target-times at major competi-
tions. In the long-term, it provides insights on talent and career development.

Training and testing

Biomechanical testing can provide valid and reliable assessments in both dry-land and in- 
water environments and assist in understanding the relationship between training load and 
the induced adaptations. A primary task of an analyst is to decide which variables should 
be measured. Changes in swimming speed mainly relate to the forces acting on the 
swimmer in the direction of motion, which are propulsion and drag (Toussaint & 
Truijens, 2005). Propulsion depends on dry-land strength and power abilities and 
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technique, i.e., mechanical power and Froude efficiency (Toussaint, 1990; Toussaint & 
Truijens, 2005); whereas, drag relates to body size and dimensions (Kjendlie & Stallman, 
2011) and technique (drag coefficient, Havriluk, 2006). As shown in Figure 1, other 
variables can be related to propulsion and drag and, therefore, are also worth monitoring 
in any swimming programme. Although many, some of them are of common interest for 
other staff members and can be obtained in cooperation. For instance, mechanical power 
can also be relevant for the strength and conditioning coach and physiotherapist practices. 
Besides, as the testing can be time-consuming and demanding, analysts should combine 
practical and affordable measurements with technological ones to cover a wider range of 
variables and, in a viable manner, get a better view of the swimmer’s actual status. For 
instance, Barbosa et al. (2019) combined simple (anthropometry and maximal strength) 
and more complex measurements (tethered force, speedometer and video analysis) to 
provide insights on how an Olympic sprinter improved the 50 m freestyle performance. In 
this sense, short duration and in-water protocols may be preferred as they are specific, 
time-saving, have a low injury risk and hardly produce residual fatigue and delayed onset 
muscle soreness. Hence, they can be used during taper and even one day before the 
competition, as performed by Barbosa et al. (2021) with speedometer plus video analysis.

The timing of the evaluation session is the next major decision to be made by the 
analyst. Interpreting the relationship between training load and the induced adaptations 
requires synchronising the testing schedule with coaches’ planning so that ideally swim-
mers are evaluated at the beginning and end of every intensification and taper periods 
(Hellard et al., 2013). The frequency of distinct tests may differ and should be adjusted 
according to the response time of each variable (Figure 2). For instance, technique 
(measured by the drag coefficient) can be highly responsive in the short-term (e.g., one 
week, Havriluk, 2006). Conversely, strength and power abilities may require 6–12 weeks 
to elicit positive results (Aspenes & Karlsen, 2012).

Figure 1. A model for understanding the relevant variables that affect speed and forces in swimming.
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Although not directly related to biomechanics, the quantification of internal and 
external training loads within intensification and taper periods is critical for under-
standing training effects (Barbosa et al., 2019; Hellard et al., 2019, 2017; Impellizzeri 
et al., 2019). For instance, the volume prescribed in different training intensities is a well- 
known method for quantifying external load (Barbosa et al., 2019; Hellard et al., 2017), 
whereas the internal load can be assessed by the session RPE method (Foster et al., 2001; 
Wallace et al. 2009; Barbosa et al., 2020c). These parameters should be of interest to the 
analyst as they can considerably affect drag and propulsion-related variables. When 
systematically repeated, the analysis of load–response relationship can reveal training 
trends, provide recommendations within and between cycles, improve performance 
forecast, and assess the actual athlete’s status for competition (Smith et al., 2002).

Race analysis

Swimming race analysis is a tool to evaluate competitive performance of a swimmer and 
provide information for specific race pace training. Data collection has evolved over the 
past decades from manual (Pai et al., 1984) to fully automated real-time image recognition 
technologies (Arellano et al., 2018; Balius et al., 2008). Until these days, race analysis 
encompasses exclusively the description of the swimmer´s kinematics. Research has been 
conducted lately to make available simple and yet valid models to estimate swim kinetics 
(drag, power, propulsion) in competition settings, similar to the models used in other 
sports (Barbosa et al., 2015).

Figure 2. Overview of the swimming analyst´s job scope and main tasks.
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A swimming race can be broken into the start, swim stroke (also called clean swimming), 
turn and finish phases (Figure 2). In each phase, the analyst can consider several sub-phases 
(Mason & Cossor, 2000). For instance, the start analysis can include the block time, flight 
time, underwater time and distance (Garcia-Hermoso et al., 2013; McGibbon et al., 2018; 
Saavedra et al., 2012). The swim stroke is broken into different sections in each lap (e.g., 
15 m, 25 m, 35 m, 45 m and 50 m marks in a long course pool). Stroke frequency, count, 
length and index are measured in each of these sections (Morais, Marinho, Arellano, & 
Barbosa, 2019). The analyst calculates the average values over each stretch of the race, or 
alternatively cycle-by-cycle variations, notably in sprint events (Simbaña-Escobar et al., 
2018). It can help to adjust race strategy from heats to semi-final and final, and provide 
guidance for training within and between macrocycles. A detailed race analysis is conducted 
in short- and middle-distances (50 m to 400 m); whereas, a less detailed analysis is carried 
out in long-distance events (800 and 1500 m) (Morais et al., 2020b).

Currently race analysis is conducted mostly by video-analysis using digital video 
cameras (Morais et al., 2019). The simpler set-up comprises one single panning camera 
that tracks the swimmers over the race. Alternatively, a set of fixed cameras at different 
distances can also be set-up. The cameras are connected to a video selector and the film is 
saved to a digital storage system. The pool sections are calibrated using external refer-
ences or the lane rope marks (Morais et al., 2019). Dedicated softwares can be selected to 
analyse the change in swimmer’s position and time over the race. The analysis can be 
manual, semi-automatic or fully automatic. In manual analysis, the analyst must track the 
swimmer frame-by-frame and record the position and/or time-stamp over different 
events of the race. In semi-automatic analysis, the software can shift from one event to 
another, with no need for the analyst to move the video clip frame-by-frame. Therefore, 
the semi-automatic analysis is quicker than the manual alternative. More recently, fully 
automated analysis has been implemented, and without human intervention the process 
can be ten times faster than the manual procedure (Arellano et al., 2018). It allows 
splitting the race into smaller sections (e.g., every 5 m) and provides even more details on 
the race performance.

Upon collection, raw data (position and time-stamps) are processed and saved to 
databases. Reports are shared with coaches and athletes in the form of spreadsheets that 
include graphs and numerical data. The same data can be displayed differently among 
analysts, according to individual and institutional report layout preferences. The reports 
may present within- and between-subject comparisons and/or comparisons against 
modelled performances or forecasts.

Swim stroke

It has been proposed in the swimming literature that swimmers should be deemed as 
non-linear, complex and dynamic systems (T. M. Barbosa et al., 2016) and indicated that 
there may exist different ways to reach the same goal. This suggests that stroke technique 
and its relationship to performance is individual to each athlete, as there exists many 
varying and successful stroke models in elite performance we seek to understand. The use 
of different tools and devices improve our understanding of swim technique and its 
contribution to performance. Using cameras from different angles through specific soft-
ware provides the necessary visual feedback within a kinaesthetic sport/environment, 
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drawing the connection between ‘feel’ (Dekerle, 2020) and visual (i.e., qualitative) feed-
back to accelerate the learning process and enhance the effectiveness of the technical 
intervention.

Evaluating body shape and its impact on passive (i.e., gliding in the streamline 
positions) and active (i.e., propelling the body by limbs´ actions) drag measures can 
provide an initial understanding of the athlete’s swimming form and streamline ability 
(Naemi et al., 2010). Papic et al. (2020a) argued that digitising body landmarks manually 
from video clips seems outdated. Another alternative is the use of mechanical speed-
ometers (Vilas-Boas et al., 2010). With use of a more recent alternative of 2D body 
landmark digitisation by neural networks, one can determine an athlete’s glide factor, 
relating to the athletes’ in-water body form and also provides an objective means to race 
suit selection. This method has been calculated to digitise body landmarks up to 233 
times faster than manual operators and relative errors are within the bounds of manual 
digitisation (Papic et al., 2021). Such method can be widely available in the near future to 
swim analysts because it significantly decreases the amount of time spent on set-up, data 
collection and data handling. Set-up is quite straightforward as all it is required is an 
underwater camera to capture the underwater glide and a calibration frame. A dedicated 
software is used for neural network training of the anatomical landmarks to be tracked. 
Then, neural network training outputs are transferred to a local laptop to digitise the 
body landmarks of all tested swimmers. As far as the end-user is concerned, the main 
difference in comparison to conventional manual tracking is the need to train the neural 
network beforehand.

Regarding athlete free swim ability, Ganzevles et al. (2019) demonstrated the useful-
ness of a tri-axial accelerometer for quantifying jerk cost and swimmer smoothness 
where findings offer insight into refined flow and coordination patterns of elite swim-
mers. Intra-stroke velocity and intra-cyclic stroke variations measured with inertial 
measurement units provide promising possibilities into body segment coordination 
and sequence timing (Worsey et al., 2018).

Stroke cycle propulsion can be derived from experimental data or analytical proce-
dures, both having advantages and disadvantages. Current experimental methods to 
assess propulsion are obtrusive and more practical to measure using hand paddles 
(Tsunokawa et al., 2019). Instrumenting a swimmer may constrain the technique because 
it can affect the range of motion, hydrodynamic drag and propelling efficiency, among 
other swimming determinants. Thus, an alternative is relying on indirect extrapolation 
measures that infer power output (Barbosa et al., 2015). To date there is no approach that 
clearly outweighs the other. Swim analysts should consider both and select the most 
feasible procedure based on testing goals and settings. For instance, analytical procedures 
can yield insights at competing settings because it is not possible to instrument the 
swimmer. Conversely, experimental evaluation is an interesting method in dedicated 
testing sessions or during regular training sessions.

One of the biggest challenges for swimmers is how to enhance the stroke technique. 
Most of the times they rely on watching it (e.g., from video clips) or feeling it 
(kinaesthetic awareness). From an unconventional approach, Hermann et al. (2020) 
poses an insightful means of understanding the swimmer’s interaction with water 
through the sonification of pressure changes during free swimming. This ability to 
combine multiple data channels into a single sound stream provides an alternative 
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method for swimmers to listen to their stroke (i.e., bio-feedback) as opposed to 
mainstream means of visual and kinaesthetic feed-back .

Testing and analysing free swim technique should be associated with race perfor-
mance goals. The protocol design should align with race requirements, rather than 
capturing measures from detached efforts in isolation. We need to adapt testing to refine 
foundational and fundamental motor skill requirements for swimming by measuring and 
understanding already known factors correlated to swim performance. Through gen-
erative conversations with coaches, analysts need to align testing protocols to athlete 
priorities to be better positioned to facilitate the path to performance enhancement.

Starts, turns & finish

The final piece of the puzzle for biomechanists working with swimmers is the skill 
components of starts, turns, and finishes. Evaluation of the importance of the starts and 
turns has been measured during international swimming competitions (Cossor & Mason, 
2001; Mason & Cossor, 2000; Morais et al., 2019; Veiga & Roig, 2017). Distances vary 
slightly between researchers but tend to be from the gun signal to the 15 m for a start, 5– 
7.5 m into the wall and then 7.5–15 m out from the wall in a turn, and 5 m for the finish. 
Success in these skills comes from maximising the power produced when leaving the block/ 
wall and maintaining the velocity through drag reduction and optimal underwater undu-
latory technique (Arellano et al., 2002).

The aquatic environment limits equipment available for kinetic analysis within the 
sport of swimming. However, over the last 20 years kinetic analysis has become more 
feasible, particularly for starts and turns (Figure 2). Technology used by analysts to 
determine kinematic and kinetic measures of the starts and turns include instrumented 
starting blocks and turning platforms, as well as inertial sensors (Mooney et al., 2015; 
Slawson et al., 2010). With the cost of these systems beyond the reach of many swimming 
programmes, researchers have developed a reliable system that is cost effective (De Jesus 
et al., 2020). Links have been made between forces produced in starts and turns with 
simple land measures and techniques as an alternative, and affordable option, to pool 
testing (Cuenca-Fernández et al., 2018; Keiner et al., 2019). Regardless of the technology 
it is important to break the skill into different phases to determine the strengths and 
weaknesses for the individual.

Whilst researchers and biomechanists can determine the cause of the technical 
limitations to the skill phases within swimming, if they are unable to change the current 
behaviour of the swimmer then the skill will remain a problem. Krause (2017) recom-
mended the use of augmented feedback to improve skill performance using both video 
and time information. This is in contrast to skill acquisition researchers who recommend 
a constraints led approach to adapt performances (Otte et al., 2020). Coaches and 
biomechanists understand the importance of ‘feel’ within swimming which is why 
there is a need to enable swimmers to develop a kinaesthetic awareness that allows 
them to adapt when external feedback is provided (Dekerle, 2020). The timing, type, 
and quality of feedback will vary depending on the phase of skill adaptation that the 
swimmer is in. Intrinsic mechanisms should enable the athlete to learn behaviours that 
result in permanent skill improvements.
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The ability to provide feedback in a timely manner assists practitioners working within 
the daily training environment. Qualitative feedback tends to be used more frequently 
than quantitative feedback but the frequency of the interaction with the coach–athlete 
partnership can have an impact on the start and turn skill enhancement from one major 
competition to the next.

Land-based training

Numerous studies have shown positive correlations between swimming speed and dry-
land strength and power abilities (Beretić et al., 2013; Dopsaj et al., 1999; Garrido et al., 
2012; Gola et al., 2014; Weston et al., 2015). Assessing variables which the literature 
supports, presenting these to the coaching staff, tracking them over time, and making 
training recommendations is the main role of an analyst.

The start is the aspect of swimming most correlated with strength training. Research 
suggested the time taken to reach predetermined set distances of 5, 10 and 15 m, was 
more highly related to vertical squat jump and countermovement jump than muscle 
strength and other parameters (Mason & Cossor, 2000).

The correlations of dry-land strength and in-water performance seems to vary with 
swimming distance (Gola et al., 2014). The relative importance of strength increases as 
the distance decreases. Several dryland strength interventions reported positive effects on 
sprint swimming performance (Aspenes & Karlsen, 2012; Girold et al., 2007; Weston 
et al., 2015). However, the wide variety of the protocols and the diversity of results make 
it necessary to examine the existing evidence to reach a consensus of the most effective 
dryland strength practices. Moreover, few studies have assessed non-front crawl strokes 
and endurance events. Most studies utilise traditional strength and conditioning exer-
cises, bench press, back squat, and deadlift. Other studies have used elbow flexion and 
extension as their corollary with swimming performance (Gola et al., 2014). However, 
there is not a standard parameter or test for analysing overall strength enhancements.

Land-based analysis also aims to prevent musculoskeletal injuries and monitor its risk 
factors (Figure 2). Swimmers frequently develop shoulder pain. The shoulder is the most 
frequently injured joint in swimming (McMaster & Troup, 1993). The prevalence of shoulder 
pain varies from 3% to 91% (Tessaro et al., 2017). Biomechanics, training volume, and 
repetitive sport stresses are the biggest contributors to shoulder injury (Grote et al., 2004; 
Johnson, 2003; Keskinen et al., 1980; McFarland & Wasik, 1996; Rovere & Nichols, 1985; 
Stocker et al., 1995; Vizsolyi et al., 1987). Risk factors that were only investigated by a single 
study assigned a low level of certainty as there is insufficient evidence to make a conclusion 
and requires future investigation to aid an evidence-based practice by analysts. These risk 
factors include the triceps length (Tate et al., 2012), latissimus length (Tate et al., 2012) and 
internal/external rotation endurance (Beach et al., 1992). The trunk and knee are also 
common sites for injuries in swimmers (Kerr et al., 2015). Notwithstanding, measurable 
risk factors have not been specifically assessed in swimmers.

In summary, more research is needed to quantify variables which correlate swimming 
performance with strength and conditioning and those which may predict injuries in 
swimmers. Until this occurs, strength and conditioning and injury prevention programmes 
must be individualised. Stroke specialities, training history, injury history, flexibility, body 
composition, and swimming biomechanical flaws are factors to consider when developing an 
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individualised strength and conditioning and injury prevention programme. The level of 
education of coaches, communication, procedures for field effectiveness have also been put 
forward as some of the hypothetical key-factors (Cossor et al., 2014; Hellard, 2014).

Conclusions

Swim analysts provide insightful information to athletes and coaches that aids their 
decision-making (Figure 2). Swim analysts can forecast performances and target-times in 
different time frames. They should also do on regular basis race analysis at official 
competitions and run testing sessions on underlying performance determinants of the 
swim stroke, start, turns and finish. Besides in-water testing, on-land assessment of 
strength and conditioning and injury prevention are part of the job scope.

These days, one large portion of the time is spent setting-up tests, collecting and 
handling data. Machine learning, big data, automatic evaluation tools and systems enable 
streaming information to athletes on the go. As this technology becomes readily available 
to most analysts, the job scope will shift more towards the analysis and interpretation of 
the data, being more engaged in the recommendation exercise to athletes and coaches.

Increasingly, the analyst is seen as part of the swim team, supporting athletes, and 
delivering quality recommendations to help coaches in the decision-making. Coaches, 
analysts and researchers must continue to strive to work in synergy supporting athletes to 
excel, serving the analyst the role of hinge between the former and the latter. Ultimately, 
the analyst should be able to address the challenges shared by the swimmer, providing 
insightful solutions that are evidence-based on cutting-edge research.
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